

National Education Policy-2020

Common Minimum Syllabus for all U. P. State Universities and Colleges

FOR

B.A./B.Sc. - MATHEMATICS (w.e.f. session 2021-22)

Approved by

Board of Studies Department of Mathematics Faculty of Science and Technology Mahatma Gandhi Kashi Vidyapith Varanasi

S	EMESTER	WISE TI	TLES OF THE PAPER IN UG MAT	HEMATICS COUR	SE
YEAR	SEMESTER	COURSE CODE	PAPER TITLE	THEORY/PRACTICAL	CREDIT
	CE	RTIFICA	TE COURSE IN APPLIED MATHE	MATICS	
FIRST	Ι	B030101T	Differential Calculus & Integral Calculus	THEORY	4
YEAR		B030102P	PRACTICAL	PRACTICAL	2
	II	B030201T	Matrices and Differential Equations & Geometry	THEORY	6
			DIPLOMA IN MATHEMATICS		
SECOND	III	B030301T	Algebra & Mathematical Methods	THEORY	6
YEAR	IV	B030401T	Differential Equations & Mechanics	THEORY	6
		1	DEGREE IN MATHEMATICS		<u> </u>
THIRD	V	B030501T	Group and Ring Theory & Linear Algebra	THEORY	5
YEAR		B030502T	Any One of The Following (i) Number Theory & Game Theory (ii) Graph Theory & Discrete Mathematics (iii) Differential Geometry & Tensor Analysis	THEORY	5
	VI	B030601T	Metric Space & Complex Analysis	THEORY	4
		B030602T	Numerical Analysis & Operations Research	THEORY	4
		B030603P	PRACTICAL	PRACTICAL	2

•

PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES

GENERAL OVERVIEW

]	B.A. / B.Sc. I			
PROGRAMME	YEAR	SEMESTER (15Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
						089	Differential Calculus	Part A	Mathematics in 12 th	Engg. and Tech. (UG),
			Paper-1	4	4	4x 15= 60	&	Unit I (9)		Chemistry/Biochemistry/
							Integral Calculus	Unit II (7)		Life Sciences(UG), Economics(UG/PG),
								Unit III (7)		Commerce(UG), BBA/BCA, B.Sc.(C.S.)
							Part A: Differential Calculus	Unit IV (7)		
								Part B		
APPLIED							Part B: Integral Calculus	Unit V (9)		
J		I -					i ai t D. integrai Calculus	Unit VI (7)		
Id		ER						Unit VII (7)		
		SEMESTER						Unit VIII (7)		
COURSE IN CS		ME	Paper-II	2	2 Lab		Practical		Mathematics in 12 th	Engg. and Tech. (UG), B.Sc.(C.S.)
SE	8	SE	Practical	_	Periods(2	2x2x 15= 60	(Practicals to be done			
N	YEAR				Hours		using			
S Q	Χ				Each)		MATHEMATICA			
	ST						/MATLAB /Maple			
AT	FIRST						/SCILAB/Maxima/			
FICATE CC HEMATICS	H						GAP etc.)		2.5. i i i i i i i i i i i i i i i i i i	
FIC HE							Matrices and Differential	Part A	Mathematics in 12 th	Engg. and Tech. (UG), B.Sc.(C.S.)
			Paper-1	6	6	6 x 15= 90	Equations	Unit I (12)		
JERTI MAT							W m& 20-	Unit II (11)		
CERTI MATI		X					Geometry	Unit III (11)		
		LE						Unit IV (11)		
		SEMESTER					Part A: Matrices and	Part B		
		EM					Differential Equations	Unit V (12)		
		S					Differential Equations	Unit VI (11)		
								Unit VII (11)		
							Part B: Geometry	Unit VIII (11)		

							B.A./B.Sc. II			
PROGRAMME	YEAR	SEMESTER (15Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
MA ATICS	VEAR	SEMESTER -III	Paper-1	6	6	6 x 15= 90	Algebra & Mathematical Methods Part A: Algebra Part B: Mathematical Methods	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
IN MATHEMATICS	SECOND YEAR	SEMESTER – IV	Paper-1	6	б	6 x 15= 90	Differential Equations & Mechanics Part A: Differential Equations Part B: Mechanics	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (12) Unit VI (11) Unit VII (11) Unit VIII (11)	Certificate Course in Applied Mathematics	Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) Engineering and Technology (UG), Science (Physics-UG)

							B.A./B.Sc. III			
PROGRAMME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
							Group and Ring Theory	Part A	Certificate Course in	Engg. and Tech. (UG),
			Paper-1	5	5	5x 15=75	& Linear Algebra	Unit I (10) Unit II (10)	Applied Mathematics	Economics(UG/PG), B.Sc.(C.S.)
							Part A: Group and Ring Theory	Unit III (9) Unit IV (9)		
							Part B: Linear Algebra	Part B		
								Unit V (10)		
								Unit VI (9)		
								Unit VII (9)		
								Unit VIII (9)		
								Part A	Diploma in	Engg. and Tech.(UG), BCA, B.Sc.(C.S.)
			Paper-2	5	5	5x 15= 75	(i) Number Theory & Game	Unit I (10)	Mathematics	
							Theory	Unit II (9)		
								Unit III (9)		
							Part A: Number Theory	Unit IV (9)		
							Part B: Game Theory	Part B		
							1 Standard	Unit V (10)		
Ň							S and R	Unit VI (10)		
Ŭ	NR	>					5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Unit VII (9)		
AT.	YERAR	'ER						Unit VIII (9)	Distance	
EMI EMI	YE	SEMESTER					(ii) Graph Theory & Discrete	Part A Unit I (10)	Diploma in Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
DEGREE IN ATHEMAT	ß	SEM					Mathematics	Unit II (9)	Mathematics	
	HI	3 2					Part A: Graph Theory	Unit III (9)		
DEGREE IN MATHEMAT	Ξ						Part B: Discrete Mathematics	Unit IV (9)		
-								Part B		
								Unit V (10)		
								Unit VI (10)		
								Unit VII (9)		
								Unit VIII (9)		
							(iii) Differential Geometry &	Part A	Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
							Tensor Analysis	Unit I (10)	Mathematics	66
							Part A: Differential Geometry	Unit II (9)		
							Part B: Tensor Analysis	Unit III (9)		
								Unit IV (9)		
								Part B		
								Unit V (10)		
								Unit VI (10)		
								Unit VII (9)		
								Unit VIII (9)		

						Metric Spaces	Part A	Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
		Paper-1	4	4	4 x 15= 60	&	Unit I (8)	Mathematics	
						Complex Analysis	Unit II (8)		
							Unit III (7)		
						Part A: Metric Spaces	Unit IV (7)		
						Part B: Complex Analysis	Part B		
							Unit V (8)		
	Г						Unit VI (8)		
							Unit VII (7)		
	SEMESTER - VI						Unit VIII (7)		
	MES					Numerical Analysis	Part A	Diploma in	Engg. and Tech. (UG), Economics(UG/PG),
	SEN	Paper-2	4	4	4x 15= 60	&	Unit I (8)	Mathematics	BBA/BCA, B.Sc.(C.S.)
						Operations Research	Unit II (8)		
							Unit III (7)		
						Part A: Numerical Analysis	Unit IV (7)		
							Part B		
						Part B: Operations Research	Unit V (8)		
							Unit VI (8)		
							Unit VII (7)		
							Unit VIII (7)		
		Paper-III	2	2 Lab		Practical		Diploma in	Engg. and Tech. (UG), B.Sc.(C.S.)
		Practical		Periods(2	2x2x 15= 60	(Practicals to be done		Mathematics	
				Hours		using Mathematica			
				Each)		/MATLAB /Maple			
						/Scilab/Maxima etc.)			
				Prog	ramme Ou	tcome/ Programme S	pecific Outco	me	
	a .			0					
Programme (Jutcome :					Val 4 257			
PO1: It is to giv	e foundatio	on knowle	edge fo	or the stud	ents to under	stand basics of mathemati	cs including app	blied aspect for t	he same.

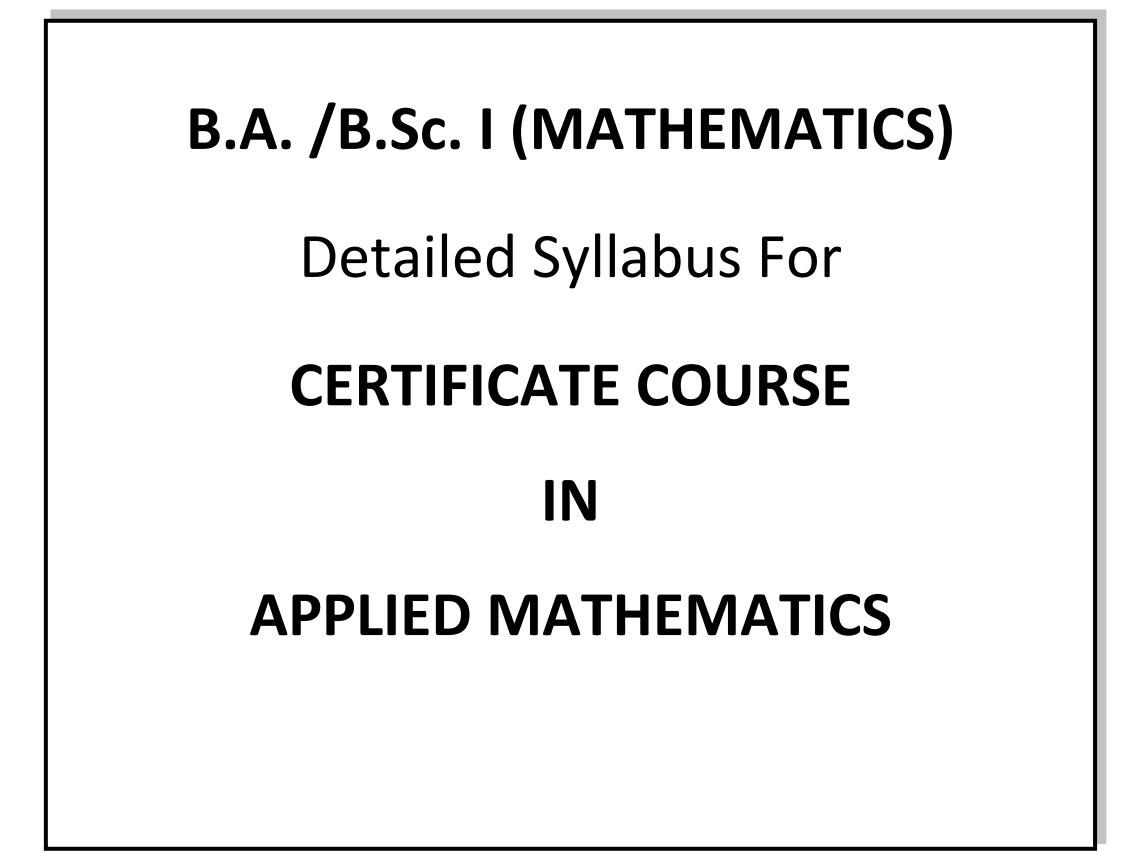
PO1: It is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for the same.

PO2: It is to develop enhanced quantitative skills and pursuing higher mathematics and research as well.

PO3: Students will be able to develop solution oriented approach towards various issues related to their environment.

PO4: Students will become employable in various govt. and private sectors

PO5: Scientific temper in general and mathematical temper in particular will be developed in students.


Programme Specific Outcome:

PSO1: Student should be able to possess recall basic idea about mathematics which can be displayed by them.

PSO2: Student should have adequate exposure to many aspects of mathematical sciences.

PSO3: Student is equipped with mathematical modeling ability, critical mathematical thinking, and problem solving skills etc.

PSO4: Student should be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.A./B.Sc. I (SEMESTER-I) PAPER-I Differential Calculus & Integral Calculus

Programi Class: B.A	me: Certificate A. / B.Sc.	Year: First	Semester: First							
			Subject: Mathematics							
Course C	ode: B030101T	Course Title: Diffe	rential Calculus& Integral Calculus							
Course o	utcomes:									
CO1: The	e programme outc	comes is to give found	ation knowledge for the students to understand basics of mathematics including applied aspect for	developing						
enhanced	quantitative skills	s and pursuing higher	mathematics and research as well.							
CO2: By	the time students	complete the course the	ney will have wide ranging application of the subject and have the knowledge of real valued funct	ions such as						
sequence a	and series. They v	will also be able to know	w about convergence of sequence and series. Also, they have knowledge about curvature, envelope a	and evolutes						
and trace of	curve in polar, Ca	artesian as well as para	metric curves.							
CO3: The	e main objective	of the course is to equ	ip the student with necessary analytic and technical skills. By applying the principles of integral	he learns to						
	• •	problems in science ar								
		ped with standard conc	epts and tools at an intermediate to advance level that will serve him well towards taking more adv	vance level						
course in 1	mathematics.									
	Credits: 4		Compulsory / Elective							
	Max. Marks: 2		Min. Passing Marks:							
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0							
			Part- A Differential Calculus							
Unit			Tonion	No. of						
			Topics	Lectures						
	Introduction to) Indian ancient Math	ematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).							
	Definition of a	sequence, theorems or	n limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy							
I	-	-	ferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence,	9						
			est, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating							
			nd conditional convergence.							
			of function of single variable, Cauchy's definition, Heine's definition, equivalence of definition							
II			ntinuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value	7						
theorem, Extreme value theorem, Darboux's intermediate value theorem for derivatives, Chain rule, indeterminate forms.										
			y Mean value theorems, mean value theorems of higher order, Taylor's theorem with various							
III			ferentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Partial differentiation, Euler's	7						
		nogeneous function.								
IV	-	• •	rvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple	7						
	points, Paramet	points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.								

	Part-B	
	Integral Calculus	
	Unit Topics	No. of Lectures
	V Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.	9
	VI Improper integrals, their classification and convergence, Comparison test, μ-test, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	7
	VII Rectification, Volumes and Surfaces of Solid of revolution, Pappu's theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.	7
	VIII Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems.	7
Sug	gested Readings (Part- A Differential Calculus):	
1.	R. G. Bartle & D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons	
2.	T. M. Apostal, Calculus Vol. I, John Wiley & Sons Inc.	
3.	S. Balachandra Rao & C. K. Shantha, Differential Calculus, New Age Publication.	
4.	H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002.	
5.	G. B. Thomas and R. L. Finney, Calculus, Pearson Education, 2007.	
6.	H. S. Dhami, Differential Calculus, New Age Publisher	
7.	Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS	
8.	Course Books (text/reference) published in Hindi may be prescribed by the Universities.	
Sug	gested Readings (Part-B Integral Calculus):	
9.	T. M. Apostal, Calculus Vol. II, John Wiley Publication	
10	. Shanti Narayan & Dr. P.K. Mittal, Integral Calculus, S. Chand	
11	. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.	
12	. H. S. Dhami, Integral Calculus, New Age Publisher	
13	. Suggestive digital platforms web links: NPTEL/SWAYAM/MOOCS	
14 Thi	. Course Books (text/reference) published in Hindi may be prescribed by the respective universities at local level. s course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Sci	ences(UG)
Eco	nomics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type Max	x. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation/ Research Orientation assignment	5
4	Assignment (Indian Ancient Mathematics and Mathematicians).	5
Co	irse prerequisites: To study this course, a student must have subject Mathematics in class 12 th	
Sug	gested equivalent online courses:	
Fui	ther Suggestions:	

B.A./B.Sc. I (SEMESTER-I) Paper-II Practical

Programm Class: B.A.	e: Certificate ./B.Sc.	Year: First	t	Semester: First			
				Subject: Mathematics			
Course Co	de: B030102P			Course Title: Practical			
Course ou	tcomes:						
CO1: The	main objective	of the course is to	to equij	o the student to plotthe different graph and solve the different types of equations by plotting the	graph using		
different co	mputer softwar	e such as Mathem	natica /	MATLAB /Maple /Scilab/Maxima etc.			
CO2. After	r completion of	this course stud	lent wo	ould be able to know theconvergence of sequences through plotting, verify Bolzano-Weierstr	ass theorem		
through plo	tting the sequen	ice, Cauchy's roo	ot test b	y plotting n^{th} roots and Ratio test by plotting the ratio of n^{th} and $(n + 1)^{th}$ term.			
CO3.Stude	nt would be al	ole toplotComple	ex num	bers and their representations, Operations like addition, substraction, Multiplication, Divisio	n, Modulus		
andGraphic	al representatio	n of polar form.					
CO4: Stud	ent would be	able to perform	follov	ving task of matrix as Addition, Multiplication, Inverse, Transpose, Determinant, Rank, E	igenvectors,		
Eigenvalue	s, Characteristic	equation and ver	rificatio	on of the Cayley-Hamilton theorem, Solving the systems of linear equations.			
	Credits: 2			Core Compulsory / Elective			
1	Max. Marks: 2	5+75		Min. Passing Marks:			
	1	Total	l No. o	f Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4	No. of		
Unit			Topics				
		-		d in Computer Lab. R/Python/Mathematica /MATLAB /Maple /Scilab/Maxima etc.			
	1. Plotting the	graphs of the follo	owing	functions:			
	(i) ax						
	(ii) [x](greatest	integer function))				
	(iii) x^{2n} ; $n \in \mathbb{N}$	1					
	(iv) x ²ⁿ⁻¹ ; n e	E N					
	$(\mathbf{v}) \frac{1}{\mathbf{x}^{2n-1}}; n \in \mathbb{N}$	1					
	$(vi)\frac{1}{x^{2n}}; n \in N$						
	(vii) $\sqrt{ax + b}$,	$ ax + b , c \pm ax $	+ b				
	$(ix)\frac{ x }{x}, \sin\left(\frac{1}{x}\right),$	$x \sin\left(\frac{1}{x}\right), e^x, e^{-x}$	^x for X	≠ 0 .			
	(x) e ^{ax+b} , log(a	$ax + b), \frac{1}{ax+b}, sin$	n(ax +	$(b), \cos(ax + b), \sin(ax + b) , \cos(ax + b) .$			
	Observe and di	scuss the effect o	of chan	ges in the real constants aand b on the graphs.			
	(2) By plotting	the graph find the	esoluti	on of the equation			
	$\mathbf{x} = \mathbf{e}^{\mathbf{x}}, \mathbf{x}^2 + 1$	$= e^{x}, 1 - x^{2} = e^{x}$	x, x = l	$\log_{10}(\mathbf{x}), \cos(x) = x, \sin(x) = x, \cos(y) = \cos(x), \sin(y) = \sin(x) \text{ etc}$			
	(3) Plotting the	graphs of polyno	omial o	f degree 2,3, 4 and 5, and their first and secondderivatives.			

	(4) Sketching parametric curves, e.g., Trochoid, Cycloid, Epicycloid and Hypocycloid etc.								
	(5) Tracing of conic in Cartesian coordinates.								
	(6) Graph of circular and hyperbolic functions.								
	(7) Obtaining surface of revolution of curves.								
	(8) Complex numbers and their representations, Operations like addition, Multiplication, Division, Modulus. Graphical representation								
	of polar form.								
	(9) Find numbers between two real numbers and plotting of finite and infinite subset of R.								
	(10) Matrix Operations: Addition, Multiplication, Inverse, Transpose, Determinant, Rank, Eigenvectors, Eigenvalues, Characteristic								
	equation and verification of the Cayley-Hamilton theorem, Solving the systems of linear equations.								
	(11) Study the convergence of sequences through plotting.								
	(12)Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.								
	(13)Study the convergence/divergence of infinite series by plotting their sequences of partial sum.								
	(14) Cauchy's root test by plotting <i>n</i> -th roots.								
	(15) Ratio test by plotting the ratio of <i>n</i> -th and $(n + 1)$ -th term.								
Su	ested Readings								
Th	course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Chemistry/Biochemistry/Life Scien	nces(UG)							
Eco	omics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)								
	Suggested Continuous Evaluation Methods: Max. Marks: 25								
SN	Assessment Type Max.	. Marks							
1	Class Tests	10							
2	Online Quizzes/ Objective Tests	5							
3	resentation	5							
4	Assignment	5							
Co	rse prerequisites: To study this course, a student must have subject Mathematics in class 12 th								
Su	ested equivalent online courses:								
Fu	her Suggestions:								

B.A./B.Sc. I (SEMESTER-II) PAPER-I Matrices and Differential Equations & Geometry

Program	me: Certificate	Year: First	Semester: Second					
Class: B.A	A./B.Sc.							
			Subject: Mathematics					
Course Co	ode: B030201T		Course Title: Matrices and Differential Equations & Geometry					
Course of	utcomes:							
CO1: The	subjects of the c	ourse are designed in s	uch a way that they focus on developing mathematical skills in algebra, calculus and analysis and g	give in deptl				
knowledge	e of geometry, ca	llculus, algebra and oth	er theories.					
CO2: The	e student will be	able to find the rank,	Eigenvalues of matrices and study the linear homogeneous and non-homogeneous equations. The	he course in				
differentia	l equation intend	s to develop problem s	olving skills for solving various types of differential equation and geometrical meaning of different	ial equation				
CO3: The	subjects learn ar	nd visualize the fundan	nental ideas about coordinate geometry and learn to describe some of the surface by using analytic	al geometry				
	course in Geome		dents have gained knowledge about regular geometrical figures and their properties. They have the					
	Credits: 6		Core Compulsory / Elective					
	Max. Marks: 2	5+75	Min. Passing Marks:					
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0					
			PART-A Matrices and Differential Equations					
Unit			Topics	No. of Lectures				
	Types of Matri	ces, Elementary operat	ions on Matrices, Rank of a Matrix, Echelon form of a Matrix, Normal form of a Matrix, Inverse					
Ι	of a Matrix by system of linea		System of linear homogeneous and non-homogeneous equations, Theorems on consistency of a	12				
	Eigenvalues, E	igenvectors and charac	teristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix,					
II	Complex functions and separation into real and imaginary parts, Exponential and Logarithmic functions Inverse trigonometric and							
	Hyperbolic fun	ctions.						
	Formation of d	ifferential equations, C	Geometrical meaning of a differential equation, Equation of first order and first degree, Equation					
III	in which the va	riables are separable, l	Homogeneous equations, Exact differential equations and equations reducible to the exact form,	11				
	Linear equation	18.						
	First order high	ner degree equations so	lvable for x, y, p, Clairaut's equation and singular solutions, orthogonal trajectories, Linear					
IV	differential equ	ation of order greater t	han one with constant coefficients, Cauchy-Euler form.	11				

PART-B Geometry No. of **Topics** Lectures General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties. Three-Dimensional Coordinates, Direction Cosines & Ratios, Projections, Planes (Cartesian and vector form), Straight lines in three Sphere, Cone and Cylinder. Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree Suggested Readings(PART-A Matrices and Differential Equations):

12

11

11

11

- 1. Stephen H. Friedberg, A. J Insel & L.E. Spence, Linear Algebra, Person.
- 2. B. Rai, D.P. Choudhary & H. J. Freedman, A Course in Differential Equations, Narosa.
- 3. D.A. Murray, Introductory Course in Differential Equations, Orient Longman.
- 4. A. C. Yadav, Matrices & Linear Algebra with GAP, Educreation Publishing.
- 5. Suggested digital plate form: NPTEL/SWAYAM/MOOCs.
- 6. M. D. Rai Singhania, Ordinary and Partial Differential Equations, S. Chand Pub.
- 7. Course Books published in Hindi may be prescribed by the Universities.

Suggested Readings (Part-B Geometry):

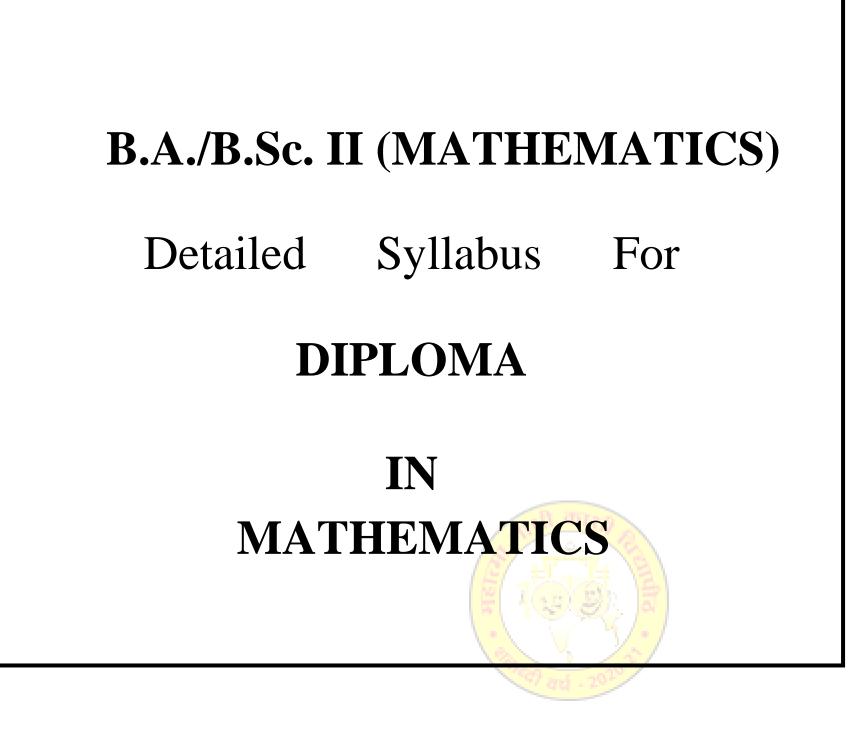
Unit

V

VI

VII

VIII


dimensions.

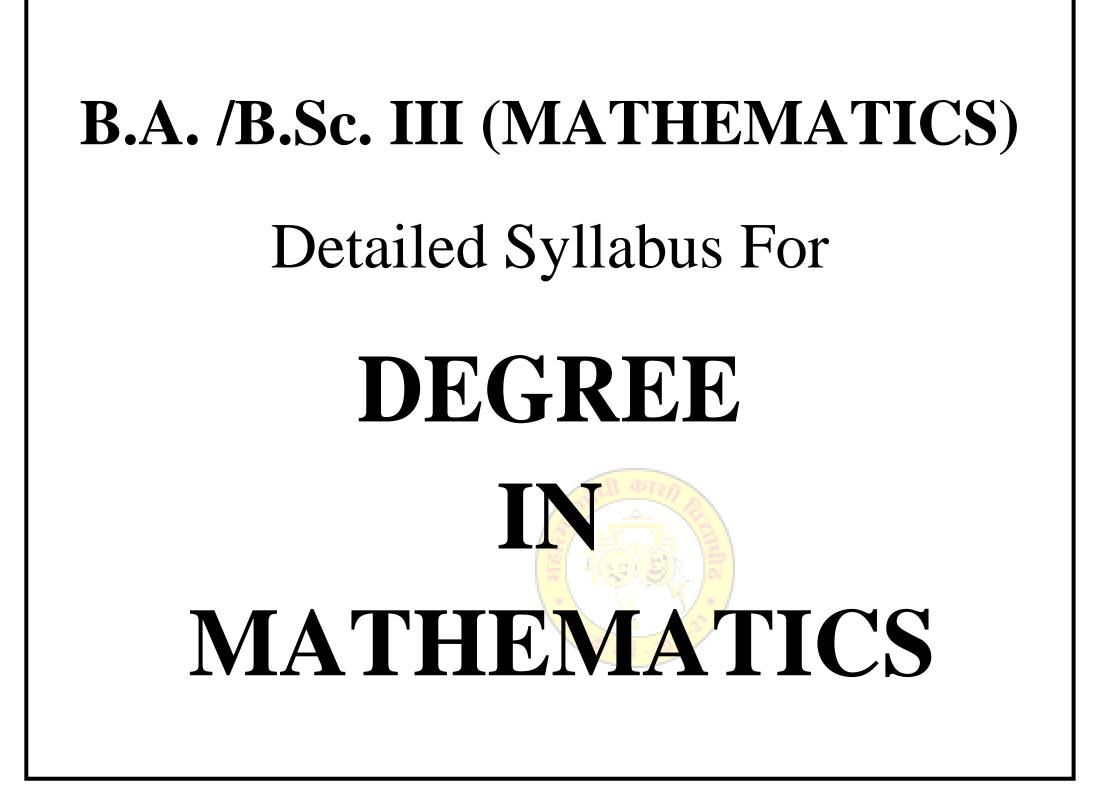
equations.

- **1.** Robert J. T. Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd.
- 2. P. R. Vittal, Analytical Geometry 2d & 3D, Pearson.
- 3. S. Narayan & P. K. Mittal, 3-dimensional Geometry, S. Chand.
- 4. S. L. Loney, The Elements of Coordinate Geometry, McMillan and Company, London.
- 5. Suggested digital plate form: NPTEL/SWAYAM/MOOCs.
- 6. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), Commerce(UG), BBA/BCA, B.Sc.(C.S.)

lass Tests	10
	10
Online Quizzes/ Objective Tests	5
resentation/ Research Orientation assignment	5
ssignment	5
r .s	esentation/ Research Orientation assignment

B.A. / B.Sc. II (SEMESTER-III) PAPER-I Algebra & Mathematical Methods


Program	me: Diploma	Voor Sooond	Semester: Third	
Class: B.A	A./B.Sc.	Year: Second		
			Subject: Mathematics	
Course C	ode: B030301T		Course Title: Algebra & Mathematical Methods	
Course o	utcomes:			
CO1: Gro	oup theory is one	of the building blocks	of modern algebra. Objective of this course is to introduce students to basic concepts of Group, R	ing theory
and their p	properties.			
CO2: A st	tudent learning th	nis course gets a concep	pt of Group, Ring, Integral Domain and their properties. This course will lead the student to basic	course in
advanced	mathematics and	Algebra.		
CO3: The	e course gives em	phasis to enhance stude	ent's knowledge of functions of two variables, Laplace Transforms, Fourier Series.	
CO4: On	successful comp	letion of the course stud	dents should have knowledge about higher different mathematical methods and will help him in g	going for
higher stu	dies and research			
	Credits: 6		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 6-0-0	
Unit			Algebra Topics	No. of Lectures
	Introduction to	Indian ancient Mathe	ematics and Mathematicians should be included under Continuous Internal Evaluation (CIE).	Lectures
I			Congruence modulo n, Definition of a group with examples and simple properties, Subgroups,	12
	-	group, Cyclic groups.	congruence modulo n, Demniton of a group with examples and simple properties, Subgroups,	12
II			rmutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition, nces, Fermat's and Euler's theorems	11
III	Normal subgro isomorphism.	ups, Quotient groups, H	Homomorphisms and isomorphisms, Fundamental theorem of homomorphism, Theorems on	11
IV	Rings, Subring of an integral d	e e	I fields, Characteristic of a ring, Ideal and quotient rings, Ring homomorphisms, Quotient field	11

	Part- B Mathematical Methods	
ן	Jnit Topics	No. of Lectures
	I Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions of two variables, Schwarz's and Young's theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange's multiplier method, Jacobians.	12
	Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives	
	II and integrals of a function, Convolution theorem, Inverse Laplace transforms, Solution of the differential equations using Laplace Transforms.	11
	III Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integrals.	11
	Calculus of variations: Variational problems with fixed boundaries- Euler's equation for functional containing first order derivative and	
	IV one independent variable, Extremals, Functional dependent on higher order derivatives, Functional dependent on more than one independent variable, Variational problems in parametric form.	11
1. 2. 3. 4. 5. 6.	gested Readings (Part- B Mathematical Methods): T. M. Apostal, Mathematical Analysis, Person G. F. Simmons, Differential Equations with Application and Historical Notes, Tata –McGraw Hill Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons. A. S. Gupta, Calculus of Variations, PHI, New Delhi. Suggested digital plate form: NPTEL/SWAYAM/MOOCs Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type Max	. Marks
1	Class Tests	10
2	Online Quizzes/ Objective Tests	5
3	Presentation/ Research Orientation assignment	5
4	Assignment (Indian Ancient Mathematics and Mathematicians)	5
Coi	rse prerequisites: To study this course, a student must have subject Mathematics in class 12 th	
Sug	gested equivalent online courses:	
	ther Suggestions:	

B. A. / B. Sc. II (SEMESTER-IV) PAPER-I Differential Equations & Mechanics

Programme: Diploma		Semester: Fourth				
Class: B.A	/B.Sc.	Year: Second				
			Subject: Mathematics			
Course Co	de: B030401T		Course Title: Differential Equations & Mechanics			
Course ou	itcomes:	I				
CO1: The	objective of this	course is to familiarize	the students with various methods of solving differential equations, partial differential equations of	f first order		
and second	order and to ha	ve qualitative application	ons.			
CO2: A str	udent doing this	s course is able to solve	e differential equations and is able to model problems in nature using ordinary differential equation	tions. After		
completing	g this course, a s	student will be able to	take more courses on wave equation, heat equation, diffusion equation, gas dynamics, non-linea	r evolution		
equation et	c. These entire c	courses are important in	engineering and industrial applications for solving boundary value problem.			
CO3: The	object of the pap	per is to give students k	nowledge of basic mechanics such as simple harmonic motion, motion under other laws and force	s.		
CO4: The	student, after co	ompleting the course car	n go for higher problems in mechanics such as Hydrodynamics, this will be helpful in getting emp	oloyment in		
industry.						
	Credits: 6		Core Compulsory / Elective			
]	Max. Marks: 2	5+75	Min. Passing Marks:			
		Total No.	of Lectures-Tu <mark>tor</mark> ials <mark>-Practical</mark> (in hours per week): L-T-P: 6-0-0			
			Part- A			
			Differential Equations			
			Differential Equations			
Unit			Topics	No. of		
				Lectures		
	Second order li	inear differential equation	ons with variable coefficients: Use of a known solution to find another, normal form, method of			
I	undetermined c	coefficient, variation of	parameters, Series solutions of differential equations, Power series method.	12		
п	Bessel, Legend	lre and Hypergeometric	functions and their properties, recurrence and generating relations.	11		
	Origin of first	order partial differentia	al equations. Partial differential equations of the first order and degree one, Lagrange's solution,	Lagrange's solution,		
III	Partial differen	rtial differential equation of first order and degree greater than one. Charpit's method of solution, Surfaces Orthogonal to the give		11		
	system of surfa					
			of partial differential equations of the second and higher order with constant coefficients,			
IV		-	ential equations of second order, Solution of second order partial differential equations with	11		
	variable coeffic	cients, Monge's method	of solution.			

Unit Topies Lecture I Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis, Wrenches, Null lines and null planes. 12 II Virtual work. Stable and Unstable equilibrium. Catenary, Catenary of uniform string. 11 Welocities and accelerations along radial and transverse directions, and along tangential and normal directions. Simple Harmonic motion. Motion under other laws of forces. Elastic strings, Motion in resisting medium. Constrained motion, Motion on smooth and rough plane curves. 11 III motion. Motion under other laws of forces. Elastic strings, Motion in resisting medium. Constrained motion, Motion on smooth and rough plane curves. 11 Wolt on of particles of varying mass & Rocket motion. Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested deade, Elements of Partial Differential Equations, Nover Publication 11 2. B. Rai, D. P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa 11 3. Iam N. Snadehe, Elements of Partial Differential Equations, Dover Publication 11 4. L. E. Elsgolts, Differential Equations, Prentices Hall Publishers 2. 5. Suggested demines/Particles. Struces, Prentices Hall Publishers 3. 6. M. D. Rai Singhania, Ordinary and Parital Differential Equations, S. Chand Pub. <th></th> <th>Part- B</th> <th></th>		Part- B	
Unit Topics Lecture I Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis. Wrenches, Null lines and null planes. 12 II Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform string. 11 Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion under other haws of forces, Elastic strings, Motion in resisting medium, Constained motion, Motion on smooth and yough plane curves. 11 IV Motion of particles of varying mass & Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference. Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested Readings(Part-A Differential Equations): 11 L G.F. Summons, Differential Equations with Application and Historical Notes, Tata-McGraw Hill 1 J. B. Rai, D. P. Chouddray & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa 3 J. B. N. Snedden, Elements of Partial Differential Equations, University Press of the Pacific. 5 Suggested Readings(Part-B McChanics): 1. I. C. Hibbeler, Engineering Mechanics-Sutics, Prentice Hall Publishers 1. I. R.C. Hibbeler, Engineering Mechanics-Sutics and Dynamics, Tata McGraw Hill 4. M. Neati Singinetind Mechanics:		Mechanics	1
I Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform string. 11 Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion on under other laws of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and rough plane curves. 11 IV Motion of particles of varying mass & Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Roting frame of reference, Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested Readings(Part-A Differential Equations): 1. 11 I. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata—McGraw Hill 11 Suggested deader, Elternets of Partial Differential Equations, Dover Publication 11 I. D. R. Singhanio, Ordinary and Partial Differential Equations, Dover Publication 11 Suggested Readings(Part-B Mechanics): 1. I. R. C. Hibbeler, Engineering Mechanics): 1. I. R. C. Hibbeler, Engineering Mechanics): 1. I. R. C. Hibbeler, Engineering Mechanics, CBS Publishers 1. J. R. O. Eduo on Opmamics, CDS Publishers 1. J. R. C. Hibbeler, Engineering Mechanics, CBS Publishers 1. J. R. C. Hibbeler, Engineering Mechanics, CBS Publishers 1.	Unit	Topics	No. of Lecture
Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic 11 motion, Motion under other laws of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and rough plane curves. 11 IV Motion of particles of varying mass & Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested Readings/Part-A Differential Equations): 1 A. F. Simmons, Differential Equations): 1. S. G. F. Simmons, Differential Equations, A Coarse of Ordinary Differential Equations, Narsa 3 Jan N. Snedden, Lienents of Partial Differential Equations, Dover Publication 4 L. E. Elsgolis, Differential Equations, Statics, Prentice Hall Publishers 5 N. D. Rai Singhania, Ordinary and Partial Differential Equations, Statics, Prentice Hall Publishers 8 A. Nelson, Engineering Mechanics-Statics, Prentice Hall Publishers 8 A. Nelson (Engineering Mechanics-Statics, Prentice Hall Publishers 8 <	Ι	Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis, Wrenches, Null lines and null planes.	12
III motion, Motion under other laws of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and cough plane curves. 11 IV Motion of particles of varying mass & Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions. Rotating frame of reference, Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested Readings(Part-A Differential Equations): 1 1. 6. F. Simmons, Differential Equations): 1. Freedman, A Course of Ordinary Differential Equations, Narosa 3. Ian N. Snedden, Elements of Partial Differential Equations, Dover Publication 4. E. Elsgotts, Differential Equations, Dover Publication 4. L. E. Elsgotts, Differential Equations, Prover Publication 5. Suggested Readings(Part-B Mechanics): 5. Suggested Readings(Part-B Mechanics): 1. R.C. Hibbeler, Engineering Mechanics-Statics, Prentices Hall Publishers 6. No Pa as 'Dechanics's tracts, Prentices Hall Publishers 2. R. O. Hibbeler, Engineering Mechanics-Statics, Prentices Hall Publishers 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. Suggested digital plate form: NTFLIS/WMYAM/MOOCs 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. Suggested digital plate form: NTFLIS/WMYAM/MOOCs 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. Suggested di	II	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform string.	11
rough plane curves. Motion of particles of varying mass & Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested Readings(Part-A Differential Equations): 1.6.F. Simmons, Differential Equations with Application and Historical Notes, Tata—McGraw Hill 12 S. B. Rai, D. Choudhary, & H. J. Freedman, A. Course of Ordinary Differential Equations, Narosa 3. Ian N. Snedden. Elements of Partial Differential Equations, Dover Publication 4. E. Elsgolts, Differential Equation and Calculus of variations, Schand Pub. S. Course Books (text/reference) published in Hindi may be prescribed by the University Press of the Pacific. 5. Suggested Readings(Part-B Mechanics): I. R. C. Hibbeler, Engineering Mechanics, Statics, Prentice Hall Publishers 7. Course Books (text/reference) publisher. 5. Suggested Infinite form: NPTEL/SWAYAM/MOOCs S. Suggested digital plate form: NPTEL/SWAYAM/MOOCs 7. Course Books (text/reference) publisher. 5. Suggested Infinite form: NPTEL/SWAYAM/MOOCs S. Suggested Infinite form: NPTEL/SWAYAM/MOOCs 7. Course Books (text/reference) publisher. 5. Suggested Infinite form: NPTEL/SWAYAM/MOOCs S. Course Books (text/reference) publishers 8. A. Nelson. Engineering Mechanics of following subjects: Enge, and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) 10 Suggested Continuous valuation Methods: Max. Marks: 25 10 10		Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic	;
IV Rotating frame of reference, Rotating earth, Acceleration in terms of different coordinate systems. 11 Suggested Readings(Part-A Differential Equations): 1. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata-McGraw Hill 2. B. Rai, D. P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa 3. Ian N. Snedden, Elements of Partial Differential Equations, Dury Publication 4. L. E. Elsgolts, Differential Equations, University Press of the Pacific. 5. M. D. Rai Singhania, Ordinary and Partial Differential Equations, S. Chand Pub. 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. Suggested Readings(Part-B Mechanics): 1. R. C. Hibbeler, Engineering Mechanics-Statics, Prentice Hall Publishers 2. R. C. Hibbeler, Engineering Mechanics-Statics, Prentice Hall Publishers 3. A. Nelson, Engineering Mechanics, CBR Publisher 6. Suggested digital plate form: NPTEL/SWAYAM/MOOCs 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. 7. Course Books (text/reference) published: 7. Engineering Mechanics-Statics, Prentice Hall Publishers 3. A. Nelson, Engineering Mechanics-Statics Prentice Hall Publishers 8. C. Hibbeler, Engineering Mechanics CBR Publisher 6. Suggested digital plate form: NPTEL/SWAYAM/MOOCs 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. Notes	III		11
i. G. F. Simmons, Differential Equations with Application and Historical Notes, Tata-McGraw Hill 2. B. Rai, D. P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Norosa 3. Ian N. Snedden, Elements of Partial Differential Equations, Dover Publication 4. L. E. Elsgolts, Differential Equation and Calculus of variations, University Press of the Pacific. 5. Suggested digital plate form: NPTEL/SWAYAM/MOOCs. 6. M. D. Rai Singhania, Ordinary and Partial Differential Equations, So Chand Pub. 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. Suggested Readings(Part-B Mechanics): 1. R.C. Hibbeler, Engineering Mechanics-Dynamics, Prentice Hall Publishers 3. A. Nelson. Engineering Mechanics Statics and Dynamics, Tata McGraw Hill 4. M. Ray, A text book on Dynamics, CBS Publisher. 6. Suggested digital plate form: NPTEL/SWAYAM/MOOCS 7. Course Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. This course can be opted as an elective by the students of following subjects: Eng. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25 N Assessment Type Max. Marks 6 Class Tests 10 10 10 10 10 10 10 10 10	IV		11
N Assessment Type Max. Marks Class Tests 10 Online Quizzes/ Objective Tests 5 Presentation/ Research Orientation assignment 5 Assignment 5 Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics	 5. Sugg 6. M. D 7. Course Suggest 1. R.C 2. R. 3. A. 4. M. 5. F. C 6. Sug 7. Co 	ested digital plate form: NPTEL/SWAYAM/MOOCs. P. Rai Singhania, Ordinary and Partial Differential Equations, S. Chand Pub. se Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. red Readings(Part-B Mechanics): C. Hibbeler, Engineering Mechanics-Statics, Prentice Hall Publishers C. Hibbeler, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill Ray, A text book on Dynamics, S. Chand Charlton, A text book of Dynamics, CBS Publisher. ggested digital plate form: NPTEL/SWAYAM/MOOCs urse Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. The Statics and Explore the Statics at local levels. Se can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)	
Class Tests 10 Online Quizzes/ Objective Tests 5 Presentation/ Research Orientation assignment 5 Assignment 5 Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics		Suggested Continuous Evaluation Methods: Max. Marks: 25	
Contine Quizzes/Objective Tests 5 Presentation/ Research Orientation assignment 5 Assignment 5 Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics 5 Suggested equivalent online courses: 5	SN	Assessment Type Max	x. Marks
Presentation/ Research Orientation assignment 5 Assignment 5 Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics Suggested equivalent online courses:			
Assignment 5 Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics 5 Suggested equivalent online courses: 6			_
Course prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics Suggested equivalent online courses:			_
Suggested equivalent online courses:			5
	-		
	00	-	

B.A./B.Sc. III (SEMESTER-V) PAPER-I Group and Ring Theory & Linear Algebra

Programme: Degree			Semester: Fifth	
Class: B.A	./B.Sc.	Year: Third		
			Subject: Mathematics	
Course Co	ode: B030501T		Course Title: Group and Ring Theory & Linear Algebra	
Course ou	itcomes:			
CO1: Line	ear algebra is a ba	asic course in almost al	l branches of science. The objective of this course is to introduce a student to the basics of linear	algebra
and some of	of its applications	s.		
CO2: The	student will use	this knowledge in com	puter science, finance mathematics, industrial mathematics and Bio mathematics. After completion	on of this
Course stu	dents appreciate	its interdisciplinary nat	ture.	
		1 5	Core Compulsory / Elective	
	Credits: 5			
	Max. Marks: 2	5+75	Min. Passing Marks:	
	r	Fotal No. of Lec	tures-Tutorial <mark>s-Practical (</mark> in hours per week): L-T-P: 5-0-0	
			PART-A Group and Ring Theory	
Unit			Topics	No. of
				Lectures
Ι	Automorphisms	s, inner automorphisms	ematics and Mathematicians should be included under Continuous Internal Evaluation (CIE). Automorphism groups, Automorphism groups of finite and infinite cyclic groups, subgroup and its properties; Applications of factor groups to automorphism groups.	10
II		· · ·	, <i>p</i> -groups, The Sylow's theorems and its consequences, Applications of Sylow's theorems; ests; Generalized Cayley's theorem, Index theorem, Embedding theorem and applications.	10
III		-	ngs, Division algorithm and consequences, Principal ideal domains (PID), Factorization of cibility tests, Eisenstein's criterion, Unique factorization in $Z[x]$ (UFD).	9
IV	Divisibility in i PID & ED.	ntegral domains, Irredu	cible, Primes, Unique factorization domains, Euclidean domains (ED), Relation between UFD,	9

PART-B

Linear Algebra

Unit	Topics	No. of
om		Lecture
V	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space.	10
VI	Linear transformations, The Algebra of linear transformations, Rank & Nullity of Linear Transformations, rank-nullity theorem, Representation of Linear transformations as matrices, Effect of change of bases.	9
VII	Linear functionals, Dual space, characteristic values of linear transformations, Cayley-Hamilton theorem.	9
	Inner product spaces and norms, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for	
VIII	finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.	9
uggesta	ed Readings:	
• A. C. Y	Blyth & Robertson, Basic Linear Algebra, Springer. Yadav, Matrices and Linear Algebra with GAP, Educreation Publication.	
A. C. Y Sugges		
A. C. Y Sugges	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25	x. Marks
A. C. Y Sugges Course his course	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs <u>e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.</u> rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25	x. Marks
A. C. Y Sugges Course his cour N	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type Max	
A. C. Y Sugges Course This course N Clas Onl	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type Max ss Tests	10
A. C. Y Sugges Course This course N Clas Onl Pres	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs <u>e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.</u> rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type Max ss Tests line Quizzes/ Objective Tests	10 5
A. C. Y Sugges Course This course This course This course Class Onl Pres Assig	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type Max ss Tests line Quizzes/ Objective Tests sentation	10 5 5
A. C. Y Sugges Course This course This course This course Class Only Pres Assig	Yadav, Matrices and Linear Algebra with GAP, Educreation Publication. sted digital plate form: NPTEL/SWAYAM/MOOCs e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels. rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type Max ss Tests line Quizzes/ Objective Tests sentation ggment (Indian Ancient Mathematics and Mathematicians)	10 5 5

B. A. / B. Sc. III (SEMESTER-V) PAPER-II (i) Number Theory & Game Theory

Programme: Degree		Year: Third	Semester: Sixth	
Class: B.A	A./B.Sc.	iear. imru		
		I	Subject: Mathematics	
Course Co	ode: B030502T		Course Title: Number Theory & Game Theory	
Course ou	itcomes:	I		
CO1: Upo	on successful con	mpletion, students will	I have the knowledge and skills to solve problems in elementary number theory and also apply	elementary
number the	eory to cryptogra	aphy.		
mak help CO3: A si strat	ting process of in improve decision ituation is strategy tegic.	nterdependent subjects. on making. gic if the outcome of a	ame Theory. Game Theory is a mathematical framework which makes possible the analysis of a It is aimed at explaining and predicting how individuals behave in a specific strategic situation, ar a decision problem depends on the choices of more than one person. Most decision problems in ples, case studies, and classroom experiments might be used.	nd therefore
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A Number Theory	No.of
Unit			Topics	No. of Lectures
Ι	-	clidean algorithm; prin	mes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients olutions of congruences; Chinese remainder theorem; Euler's phi-function.	10
п	-		; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about ty law; proofs of various formulations; Jacobi symbol.	9
ш	Diophantine E Solutions of ax diophantine eq	$x + by = c, x^n + y^n = z$	<i>n</i> ; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of	9
IV	Generating Fur tion Method. R	ecurrence Relations: F	nce Relations ting coefficient of generating functions, Partitions, Exponential Generating Functions, A Summa- Recurrence Relation Models, Divide and conquer Relations, Solution of Linear, Recurrence Rela- currence Relations, Solutions with Generating Functions.	

	Part- B	
	Game Theory	
Unit	Topics	No. of Lecture
V	Introduction, overview, uses of game theory, some applications and examples, and formal definitions of: the normal form, payoffs, strategies, pure strategy Nash equilibrium.	10
VI	Introduction, characteristic of game theory, Two- person zero-sum game, Pure and Mixed strategies, Saddle point and its existence.	10
VII	Fundamental Theorem of Rectangular games, Concept of Dominance, Dominance and Graphical method of solving Rectangular games.	9
	Relationship between rectangular game and Linear Programming Problem, Solving rectangular game by Simplex method, reduction of	
VIII	$m \times n$ game and solution of 2 × 2, 2 × s, and r × 2 cases by graphical method, algebraic and linear programming solution of m×n games.	9
Suggeste	d Readings (Part-A Number Theory):	
6. Cours Suggeste . Martin 2. Vijay K 3. Prajit D 5. Allan N 5. Sugges	ested digital plateform:NPTEL/SWAYAM/MOOCs ae Books published in Hindi may be prescribed by the Universities. d Readings (Part-B Game Theory): Osborne, An Introduction to Game Theory, Oxford University Press, 2003 Crishna, Game Theory, Academic Press. Dutta, Strategies and Games, MIT Press, (Website 1) <u>http://www.ece.stevens-tech.edu/~ccomanic/ee800c.html</u> MacKenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006 ted digital plateform:NPTEL/SWAYAM/MOOCS Books published in Hindi may be prescribed by the Universities.	
This cours	se can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
SN	Suggested Continuous Evaluation Methods: Max. Marks: 25	. Marks
	Assessment Type Max Tests	10
	ne Quizzes/ Objective Tests	5
	entation	5
Assig	nment	5
Course p	prerequisites: To study this course, a student must have Diploma in Mathematics	
buggeste	d equivalent online courses:	

B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Graph Theory & Discrete Mathematics

C	Programme: Degree Year:		Semester: Sixth	
Class: B.A	./B.Sc.			
		-	Subject: Mathematics	
Course Co	de: B030502T		Course Title: Graph Theory & Discrete Mathematics	
Course out	tcomes:			
CO1: Upor	n successful con	npletion, students will h	nave the knowledge of various types of graphs, their terminology and applications.	
CO2: After	r Successful con	mpletion of this course	students will be able to understand the isomorphism and homomorphism of graphs. This course	e covers the
basic conce	epts of graphs u	sed in computer scienc	e and other disciplines. The topics include path, circuits, adjacency matrix, tree, coloring Afte	er successful
completion	of this course the	he student will have the	knowledge graph coloring, color problem, vertex coloring.	
CO3: After	r successful con	npletion, students will h	ave the knowledge of Logic gates, Karnaugh maps and skills to proof by using truth tables. After	
Successful	completion of th	his course students will	be able to apply the basics of the automation theory, transition function and table.	
CO4: This	course covers th	he basic concepts of dis	crete mathematics used in computer science and other disciplines that involve formal reasoning.	The topics
include log	ic, counting, rel	ations, Hasse diagram a	and Boolean algebra. After successful completion of this course the student will have the knowled	lge in
Mathematic	cal reasoning, co	ombinatorial analysis, d	liscrete structures and Applications.	
	Credits: 5		Core Compulsory / Elective	
I	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A Graph Theory	
				No. of
Unit			Topics	Lectures
Ι			s of graphs, Simple graph, multi graph, graph terminology, representation of graphs, Bipartite, connected components in a graph, Euler graphs, Directed, Undirected, multi-graph, mixed graph.	10
II		-	ursal graph, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism ace relation and degree of the graph.	9
III		-	circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, t path, Dijkstra's algorithm.	9
IV	Tree, Binary ar	nd Spanning trees, Colo	ring, Color problems, Vertex coloring and important properties.	9

	Part- B				
	Discrete Mathematics				
τ	Unit Topics	No. of Lectures			
	 Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table. 				
	 Relation- Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation, Hasse diagram. Boolean Algebra- Basic definitions, Sum of products and products of sums, Logic gates and Karnaugh maps. 	10			
	VII Combinatorics- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	9			
	Finite Automata- Basic concepts of automation theory, Deterministic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.	9			
Sug	gested Readings (Part-A Graph Theory):				
4 5 6 8ug 1 2 3 4 5 6	 S. S. Ray, Graph Theory with Algorithms and Its Applications; In Applied Science and Technology. A. C. Yadav, Elements of Discrete Mathematics, Golden Valley Publication. Suggested digital plateform:NPTEL/SWAYAM/MOOCs Course Books published in Hindi may be prescribed by the Universities. gested Readings (Part-B Discrete Mathematics): C. L. Liu, Discrete Mathematics, Mc Graw Hill. Trembley and Manohar, Discrete Mathematics with computer application. K. H. Rosen, Discrete Mathematics and Its Applications, Mc Graw Hill. R. Garnier & J. Taylor, Discrete Mathematics A new Technology, IOP Publishing, London. Suggested digital plateform:NPTEL/SWAYAM/MOOCS. Course Books published in Hindi may be prescribed by the Universities. course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.) 				
	Suggested Continuous Evaluation Methods: Max. Marks: 25				
SN	Assessment Type Max	. Marks			
1	Class Tests	10			
2	Online Quizzes/ Objective Tests	5			
3	sentation 5				
4 Assignment					
Cou	rse prerequisites: To study this course, a student must have Diploma in Mathematics				
Sug	gested equivalent online courses:				
.	ther Suggestions:				

B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Differential Geometry & Tensor Analysis

Programm Class: B.A	me: Degree A./B.Sc.	Year: Third	Semester: Sixth	
			Subject: Mathematics	
Course Co	ode: B030502T		Course Title: Differential Geometry & Tensor Analysis	
Course ou	itcomes:	I		
CO1: Afte	er Successful cor	npletion of this course	, students should be able to determine and calculate curvature of curves in different coordinate syst	tems.
CO2: This	s course covers t	he Local theory of Cur	ves, Local theory of surfaces, Geodesics, Geodesics curvature, Geodesic polars, Curvature of curv	es on sur-
faces, Gau	ussian curvature,	Normal curvature etc.		
		pletion of this course, Einstein tensor etc.	students should have the knowledge of tensor algebra, different types of tensors, Riemannian sp	ace, Ricci
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			Part- A Differential Geometry	
Unit			Topics	No. of
	× 1.1	<u> </u>		Lectures
I	rectifying plane	e, Osculating circle, os	Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and culating sphere Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surs, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.	
Local Theory of Surfaces- Parametric patches on surface curve of a surface, family of surfaces (one parameter), rues surfaces, skew ruled surfaces and developable surfaces, surfaces of revolution, Helicoids.			9	
III			c length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonical geo- geodesics, geodesics curvature, Geodesic polars.	9
IV			curves on surfaces, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, nes of curvature, Rodrigue's formula, Euler's theorem.	9

	Part- B	
	Tensor Analysis	
l	Unit Topics	No. of
	V Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensors-	
	symmetric tensor, inner product, associated tensor with examples.VITensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Law of transformation of Christoffel's symbols, Covariant differentiation, non- commutativity of Covariant derivative.	10
	 Gradient of scalars, Divergence of a contravariant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, with examples. 	9
	Riemannian space, Riemannian curvatures and their properties, geodesics, geodesic curvature, geometrical interpretation of curvature tensor, Ricci tensor, scalar curvature, Einstein space and Einstein tensor.	9
ug	gested Readings (Part-A Differential Geometry):	
3 4 5 7 8 9 1 1 1 2 3 4 5	 B. O'Neill, Elementary Differential Geometry, 2nd Ed., Academic Press, 2006. C.E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press 2003. D.J. Struik, Lectures on Classical Differential Geometry, Dover Publications, 1988. S. Lang, Fundamentals of Differential Geometry, Springer, 1999. B. Spain, Tensor Calculus: A Concise Course, Dover Publications, 2003. An Introduction to Differential Geometry (with the use of tensor Calculus), L. P. Eisenhart, Princeton University Press, 1940. Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd Edition, I. S. Sokolnikoff, John Wiley and Sons., 1 D. Somasundaram, Differential Geometry : A First Course, Alpha Science International. O.Suggested digital plateform:NPTEL/SWAYAM/MOOCS Course Books published in Hindi may be prescribed by the Universities. R. S. Mishra, A Course in Tensors with Applications to Reimannian Geometry, Pothishala Pvt. Ltd, Allahabad. Suggested digital plateform:NPTEL/SWAYAM/MOCCS Course Books published in Hindi may be prescribed by the Universities. course Books published in Hindi may be prescribed by the Universities. Suggested digital plateform:NPTEL/SWAYAM/MOCCS Course Books published in Hindi may be prescribed by the Universities. course Books published in Hindi may be prescribed by the Universities. course Books published in Hindi may be prescribed by the Universities. course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.) 	964.
INT		. Monlia
N	· · ·	x. Marks
	Class Tests	10
	Online Quizzes/ Objective Tests	5
	Presentation	5
	Assignment	5
Cou	arse prerequisites: To study this course, a student must have Diploma in Mathematics	
1	gested equivalent online courses:	
oug		

B.A./B.Sc. III (SEMESTER-VI)

METRIC SPACES & COMPLEX ANALYSIS

student the foundation in mathematics.	Programme: Degree		Year: Third	Semester: Sixth			
Course Code: B030601T Course Title: METRIC SPACES & COMPLEX ANALYSIS Course outcomes: CO1: The course is aimed at exposing the students to foundations of analysis which will be useful in understanding various physical phenomena and gives the student the foundation in mathematics. CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research. The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Metric Spaces Unit Basic Concepts I Metric spaces: Definition and examples, Sequences in metric spaces. Cauchy sequences, Complete metric space. I Open and closed balls, Neighborhoods, Open sets, Interior of a set, finit points of a set, derived sets, closed sets, set intervention theorem, Subspaces, Denes se	Class: B.A	A./B.Sc.					
Course outcomes: CO1: The course is aimed at exposing the students to foundations of analysis which will be useful in understanding various physical phenomena and gives the student the foundation in mathematics. CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research. The student in understanding pure mathematics and in research. The student will be uble to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. The student will be uble to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. The student will be uble to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Metric Spaces Unit Topics Rasic Concepts Metric Spaces Unit Topics Rasic Concepts Metric Spaces I Metric Spaces I Metric Spaces I Continuity and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. I Copology of Metric Spaces I Continuity & Uniform Continuity in Metric Spaces, Dense set. Continuity & Uniform Continuity in Metric Spaces, Dense set. Continuity & Uniform Continuity in Metric Spaces, Connected news of continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. Connectedness and Compactness Competed subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness, Compactness and continuous mappings, Compactness and contenes spaces				Subject: Mathematics			
CO1: The course is aimed at exposing the students to foundations of analysis which will be useful in understanding various physical phenomena and gives the student the foundation in mathematics. CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research. The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Topics No. of Lectures I Metric spaces: Definition and examples. Sequences in metric spaces, Cauchy sequences, Complete metric space. I Open and closed balk, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. I Open and closed balk, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, diameter of a set, fixed point theorem. Contraction mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Sequences of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness and Compactness and continuous mappings, Compactness, Compactness and on the response and outper characterizations and continuous mappings, Compactness, Compactness and Compactness and continuous mappings, Compactness, Compactness and Compactness and continuous mappings, Compactness, Compactness and Compactness and Compactness and continuous mappings, Compactness, Compactness and Compactness and continuous mappings, Compactness, Compactness and Compactness and Compactness and Compactness and Compactness and Compa	Course C	ode: B030601T	Course Title:	METRIC SPACES & COMPLEX ANALYSIS			
student the foundation in mathematics. CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research. The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Credits: 4 Core Compulsory / Elective Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Metric Spaces Unit Topics No. of Lectures Racic Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. Based Concepts I Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cautor's intersection theorem. Subspaces, Dense set. Continuous mappings, Bauech fixed point theorem. Contraction mappings, Bauech fixed point theorem. Y Connectedness and Compactness of continuity, Uniform continuity, Homeomorphisms, Compactness, Compactness and Topic Subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Topic Subsets of a metric space, Connectedness and continuous mappings. Compactness, Compactness and Topic Subsets of a metric space, Connectedness and continuous mappings. Compactness, Compactness and Topic Subsets of a metric space, Connectedness and continuous mappings. Compactness, Compactness and Compactness and Continuous mappings. Compactness, Compactness and Topic Subsets of a metric space, Connectedness and continuous mappings. Compactness, Compactness and Compactness and Compactness and Continuous mappings. Compactness, Compactness and Continuous mappings. Compactness, Compactness and Compactness and Continuous mappings. Compactness, Compactness and Compactness and Continuous mappings. Compac	Course ou	itcomes:					
CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research. The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Credits: 4 Core Compulsory / Elective Max. Marks: 25+75 Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Metric Spaces Unit Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Metric Spaces Unit Topology of Metric Spaces Topology of Metric Spaces Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Deme set. Continuity & Uniform Continuity in Metric Spaces Continuous mappings, Sequentice infractorizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Sequentice infractorizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Sequentic	CO1: The	course is aimed	at exposing the studer	ts to foundations of analysis which will be useful in understanding various physical phenomena a	and gives the		
the student in understanding pure mathematics and in research. The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Credits: 4 Core Compulsory / Elective Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Topics No. of Lectures 1 Metric Spaces 8 1 Metric Spaces 8 1 Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closeare of a set, diameter of a set, clattor's intersection theorem, Subspaces, Dense set. 8 11 Continuity & Uniform Continuity in Metric Spaces 8 11 Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms. 7 11 Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms. 7 11 Contraction mappings, Banach fixed point theorem. 7	student the	e foundation in m	athematics.				
The student will be able to solve various problems based on linear programming. After successful completion of this paper will enable the students to apply the basic concepts of operations research. Credits: 4 Core Compulsory / Elective Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Part-A Metric Spaces Unit Topics No. of Lectures Herric Spaces No. of Lectures I Metric Spaces, Complete metric space, Complete metric space. 8 I Open and closed balls, Neighborhoods, Open sets, Interior of a set, derived sets, closed sets, closure of a set, diameter of a set, clantor's intersection theorem, Subspaces, Dense set. 8 III Continuity & Uniform Continuity in Metric Spaces 7 IIII Contraction mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Ramach fixed point theorem. 7	CO2: Afte	er completion of	this course the student	will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will	be helpful to		
he basic concepts of operations research. Credits: 4 Core Compulsory / Elective Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Sector Spaces No. of Lectures Basic Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 Copology of Metric Spaces II Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 Continuity & Uniform Continuity in Metric Spaces 7 III Continuity & Uniform Continuity in Metric Spaces 7 IIII Continuity & Uniform Continuity in Metric Spaces 7 IIII Continuity & Uniform Continuity in Metric Spaces 7 IIII Contraction mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7	the studen	t in understandin	g pure mathematics an	id in research.			
Credits: 4 Core Compulsory / Elective Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Part- A Metric Spaces Interview of a set, Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 Topology of Metric Spaces 8 II Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 Continuity & Uniform Continuity in Metric Spaces III Contraction mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 Connectedness and Compactness V Connectedness of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness and Compactness and Continuous mappings, Compactness, Compactness and Compactness and Continuous mappings, Compactness, Compactness and Compactness and Compactness and Compactness and Compactness and Continuous mappings, Compactness, Compactness and Compactness and Compactness and Compactness and Compactness and Compactness and Compactness Compactness and Compactness a	The stude	nt will be able to	solve various problem	s based on linear programming. After successful completion of this paper will enable the student	s to apply		
Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Topics No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Topics No. of Lectures Basic Concepts 1 Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 Topology of Metric Spaces 11 Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 Continuity & Uniform Continuity in Metric Spaces 7 III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 Connectedness and Compactness 7 Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness and Continuous mappings, Compactness, Compactness, Compactness and Compactness and Continuous mappi	the basic c	concepts of opera	tions research.				
Max. Marks: 25+75 Min. Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Topics No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part- A Metric Spaces Unit Topics No. of Lectures Basic Concepts 1 Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 Topology of Metric Spaces 11 Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 Continuity & Uniform Continuity in Metric Spaces 7 III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 Connectedness and Compactness 7 Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness and Continuous mappings, Compactness, Compactness, Compactness and Compactness and Continuous mappi							
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Part-A Metric Spaces Init No. of Lectures Metric Spaces Init No. of Lectures Basic Concepts No. of Lectures Init Seconcepts Seconcepts Init Seconcepts Seconcepts Seconcepts Seconcepts Seconcepts Seconcepts Seconcepts Seconcepts Seconcept Seconcept S		Credits: 4		Core Compulsory / Elective			
Part- A Metric Spaces Unit Topics No. of Lectures Basic Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 I Metric Spaces 8 I Open and closed balls, Neighborhoods, Open sets, Interior of a set, Imit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness 7		Max. Marks: 2	5+75	Min. Passing Marks:			
Part- A Metric Spaces Unit Topics No. of Lectures Basic Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 I Metric Spaces 8 I Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connectedness and Compactness 7							
Metric Spaces Unit Topics No. of Lectures Basic Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 I Topology of Metric Spaces 8 II Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuity & Uniform Continuity in Metric Spaces Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness 7			Total No. of	Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0			
Metric Spaces Unit Topics No. of Lectures Basic Concepts Metric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space. 8 I Topology of Metric Spaces 8 II Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuity & Uniform Continuity in Metric Spaces Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness, Compactness, Compactness and Compactness				Port A			
Unit Topics No. of Lectures Basic Concepts Basic Concepts Concepts Concepts Basic Concepts Concepts Concepts Concepts Concepts Concepts Concepts Concepts Conconcepts Concepts Concepts Concept Concepts Concept Co							
UnitTopicsLecturesBasic ConceptsBasic Concepts8IMetric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space.8IIOpen and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closure of a set, closure of a set, clantor's intersection theorem, Subspaces, Dense set.8IIIOpen and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closure of a set, and closed balls, Neighborhoods, Open sets, Interior of a set, derived sets, closed sets, closure of a set, and closed balls, Neighborhoods, Open sets, Interior of a set, Imit points of a set, derived sets, closed sets, closure of a set, and closed balls, Neighborhoods, Open sets, Interior of a set, Imit points of a set, derived sets, closed sets, closure of a set, and closed balls, Neighborhoods, Open sets, Interior of a set, Contract space, Contraction theorem, Subspaces, Dense set.8IIIIContinuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem.7IVConnectedness and Compactness7				Metric Spaces			
Image: Constraction mappings, Banach fixed point theorem.LecturesIWConnectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Topology of Metric Spaces7					No. of		
IMetric spaces: Definition and examples, Sequences in metric spaces, Cauchy sequences, Complete metric space.8IITopology of Metric Spaces Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set.8IIIContinuity & Uniform Continuity in Metric Spaces Contraction mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem.7IVConnectedness and Compactness Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness and Compactness7	Unit			Topics	Lectures		
III Topology of Metric Spaces 8 III Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuity & Uniform Continuity in Metric Spaces 7 III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and 7 7		Basic Concept	s				
II Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuity & Uniform Continuity in Metric Spaces 7 Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and T 7	I	Metric spaces:	Definition and examp	les, Sequences in metric spaces, Cauchy sequences, Complete metric space.	8		
II Open and closed balls, Neighborhoods, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set, diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. 8 III Continuity & Uniform Continuity in Metric Spaces 7 Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and T 7							
diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. Image: Continuity & Uniform Continuity in Metric Spaces III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compactness and Compactness and Compactness and Compactness and Connectedness and continuous mappings, Compactness, Compactness and Compactnes and Compactness and Compactness and Compactness and		Topology of M	letric Spaces		_		
diameter of a set, Cantor's intersection theorem, Subspaces, Dense set. Image: Continuity & Uniform Continuity in Metric Spaces III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, Contraction mappings, Banach fixed point theorem. 7 IV Connectedness and Compactness of a metric space, Connectedness and continuous mappings, Compactness, Compactness and Compac	п	Open and close	d balls, Neighborhood	ls, Open sets, Interior of a set, limit points of a set, derived sets, closed sets, closure of a set,	8		
III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, 7 Contraction mappings, Banach fixed point theorem. 7 Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and 7 IV 7							
III Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphisms, 7 Contraction mappings, Banach fixed point theorem. 7 Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and 7 IV 7		Continuity &	Uniform Continuity	in Metric Spaces	_		
Contraction mappings, Banach fixed point theorem. Connectedness and Compactness IV Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and 7	III						
Image: Connectedness and Compactness Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and IV 7							
Connectedness, Connected subsets of a metric space, Connectedness and continuous mappings, Compactness, Compactness and IV				L			
IV 7			-	a metric space, Connectedness and continuous mappings, Compactness. Compactness and			
	IV				7		
		, , ,					

PAPER-I

	Part- B	
	Complex Analysis	
Unit	Topics	No. of Lectures
V	Analytic Functions and Cauchy-Riemann Equations Functions of complex variable, Mappings; Mappings by the exponential function, Limits, Theorems on limits, Limits involving the point at infinity, Continuity, Derivatives, Differentiation formulae, Cauchy-Riemann equations, Sufficient conditions for differentiability; Analytic functions and their examples. Milne-Thompson method.	8
	Elementary Functions and Integrals	
VI	Exponential function, Logarithmic function, Branches and derivatives of logarithms, Trigonometric function. Derivatives of these	
	functions, Definite integrals of functions, Contours, Contour integrals and its examples, Upper bounds for moduli of contour integrals.	
	Cauchy's Theorems and Fundamental Theorem of Algebra	
VII	Anti-derivatives, Proof of Anti-derivative theorem, Cauchy-Goursat theorem, Cauchy integral formula; an extension of Cauchy	7
	integral formula, Consequences of Cauchy integral formula, Liouville's theorem and the fundamental theorem of algebra.	
VIII	Series and Residues Convergence of sequences and series, Taylor series and its examples; Laurent series and its examples, Absolute and Uniform convergence of power series, Uniqueness of series representations of power series, Zeros & types of singularities, Residues at poles and its examples, Residues, Cauchy's residue theorem, residue at infinity.	7
. Shirali . Sugges	ain & K. Ahmad, Metric Space, PHI, India. , Satish & Vasudeva, H. L. (2009). Metric Spaces, Springer, First Indian Print. ated digital plate form: NPTEL/SWAYAM/MOOCS. Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.	
	ed Readings (Part-B Complex Analysis):	
	& Churchill, Complex variable and applications	
	nusamy, Foundation of Complex Analysis, Narosa Publishing House.	
	Gamelin, Complex Analysis, Springer.	
	sted digital plate form: NPTEL/SWAYAM/MOOCS.	
	Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.	
This cour	se can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
SN	Suggested Continuous Evaluation Methods: Max. Marks: 25 Assessment Type	x. Marks
	s Tests	<u>10</u>
Onl	ine Quizzes/ Objective Tests	5
Pres	entation	5
Assi	gnment	5
Course J	prerequisites: To study this course, a student must have Diploma in Mathematics	
00	ed equivalent online courses:	
urther	Suggestions:	

B.A./B.Sc. III (SEMESTER-VI) PAPER-II Numerical Analysis & Operations Research

Programn Class: B.A	ne: Degree A./B.Sc.	Year: Third	Semester: Sixth	
			Subject: Mathematics	
Course Co	ode: B030602T		Course Title: Numerical Analysis & Operations Research	
Course ou	utcomes:			
CO1: The	aim of this cour	se is to teach the studen	nt the application of various numerical technique for variety of problems occurring in daily life. A	t the end of
the course	the student will	be able to understand the	he basic concept of Numerical Analysis and to solve algebraic and differential equation.	
CO2: The	main outcome w	vill be that students will	l be able to handle problems and finding approximated solution. Later he can opt for advance cou	rse in
Numerical	Analysis in high	ner Mathematics.		
CO3: The	student will be a	able to solve various pro	oblems based on linear programming. After successful completion of this paper will enable the stu	idents to
apply the b	pasic concepts of	operations research.		
	Credits: 4		Core Compulsory / Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No.	of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0	
Unit			Numerical Analysis Topics	No. of Lectures
I	_		nt, Regula-Falsi, Newton-Raphson's method, Newton's method for multiple roots, Interpolation, Difference schemes, Divided differences, Interpolation formula using differences.	8
II	equations: Dire	ect method for solving s ds (Jacobi, Gauss Seide	Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), el, Relaxation methods). The Algebraic Eigenvalue problems: Jacobi's method, Givens method,	8
III		n method, Types of app	ential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: roximation: Least Square polynomial approximation, Uniform approximation, Chebyshev	7
IV	-		ons, Shooting method and Difference equation method for solving second linear order differential first, second and third type.	7

PART-B

Operations Research

Unit	Topics	No. of Lectures
V	Introduction, Linear programming problems, statement and formation of general linear programming problems, graphical method, Slack and surplus variables, standard and matrix forms of linear programming problem, basic feasible solution.	8
VI	Convex sets, fundamental theorem of linear programming, basic solution, Simplex method, introduction to artificial variables, two phase method Big-M method and their comparison.	8
VII	Resolution of degeneracy, duality in linear programming problems, primal dual relationships, revised simplex method.	7
VIII	Sensitivity analysis, Transportation problems, assignment problems.	7
Sugges	sted Readings(Part-A Numerical Analysis):	
1. M. K	Jain, S. R. K. Iyengar & R. K. Jain, Numerical Methods for Engineering and scientific computation, New Age Int. Publisher.	
2. S. S. S	Sastry, Introductory methods of Numerical Analysis,	
3. Sugge	ested digital plate form: NPTEL/SWAYAM/MOOCs	
4.Cours	e Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.	
Sugges	ted Readings(Part-B Operation Research):	
1. Taha,	Hamdy H, "Operations Research- An Introduction ", Pearson Education.	
2.Gupta	a, Prem Kumar, Initials, "Operations Research", Chand (S) & Co Ltd, India	
3. Kant	i Swaroop, P. K. Gupta & Manmohan, Operations Research, S. Chand.	
4.Hillie	r Frederick S and Lieberman Gerald J., "Operations Research", McGraw Hill Publication.	
5.Winst	ton Wayne L., "Operations Research: Applications and Algorithms", Cengage Learning, 4 th Edition.	
6. Hira l	D.S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co Ltd.	
7. Sugge	ested digital plate form: NPTEL/SWAYAM/MOOCs.	
8. Cours	se Books (text/reference) published in Hindi may be prescribed by the Universities at local levels.	
This cou	arse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), B.Sc.(C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
SN	Assessment Type Max	. Marks
	ss Tests	10
	line Quizzes/ Objective Tests sentation	5 5
	ignment	5
	prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics	5
	ted equivalent online courses:	
00	r Suggestions:	

B. A. / B. Sc. III (SEMESTER-VI) PAPER-III Practical

Program Class: B.A	ne: Degree A./B.Sc.	Year: Third	Semester: Sixth	
			Subject: Mathematics	
Course C	ode: B030603P		Course Title: Practical	
Course of				
		course is to equip the st	udent to solve the transcendental and algebraic equations, system of linear equations, ordinary	v differential
	•		Method of finding Eigenvalue by Power method (up to 4×4), Fitting a Polynomial Function	
degree).				
	Credits: 2		Core Compulsory / Elective	
	Max. Marks: 2		Min. Passing Marks:	
			of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4	
				No. of
Unit			Topics	Lectures
	 Solution of tr Bisection me Newton-Rap Secant meth Regula-Fals Solution of s LU decompo 	ohson method (Simple r nod. si method. system of linear equatio sition method mination method bi method el method	root, multiple roots, complex roots).	
i) Lagrange Interpolationii) Newton's forward, backward and divided difference interpolations				
	4. Numerical Ir			
	i) Trapezoidal I	-		
	ii) Simpson's o			
	iii) Weddle's R			
	iv) Gauss Quad			
	,		ower method (up to 4×4)	
		ynomial Function (up to		

	7. Solution of ordinary differential equations	
	i) Euler method	
	ii) Modified Euler method	
	iii) Runge-Kutta method (order 4)	
	(iv) The method of successive approximations (Picard)	
Su	ggested Readings:	
his	s course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(U	G/PG), B.Sc.(C.S.)
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
N	Assessment Type	Max. Marks
	Class Tests	10
,	Online Quizzes/ Objective Tests	5
1	Presentation	5
Ļ	Assignment	5
Cou	Trse prerequisites: To study this course, a student must have Certificate Course in Applied Mathematics	
Jug	gested equivalent online courses:	
<u>l</u> ur	ther Suggestions:	
ui		

